高考数学选择题解题技巧有哪些

2018-4-15 9:34:53 文/王世忠 来源:澳门赌场app

  数学是极难并且分值极大的一门学科,那么对于高考数学选择题有哪些技巧呢,下面优优网小编为大家整理了一些关于高考数学选择题的解题技巧,供参考。

【一】高考数学选择题解题技巧

  1、不等式、方程或函数的题型,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。

  2、在研究含有参数的初等函数的时候应该抓住无论参数怎么变化一些性质都不变的特点。如函数过的定点、二次函数的对称轴等。

  3、在求零点的函数中出现超越式,优先选择数形结合的思想方法。

  4、恒成立问题中,可以转化成最值问题或者二次函数的恒成立可以利用二次函数的图像性质来解决,灵活使用函数闭区间上的最值,分类讨论的思想(在分类讨论中应注意不重复不遗漏)。

  5、选择与填空中出现不等式的题,应优先选特殊值法

  6、在利用距离的几何意义求最值得问题中,应首先考虑两点之间线段最短,常用次结论来求距离和的最小值;三角形的两边之差小于第三边,常用此结论来求距离差的最大值。

  7、求参数的取值范围,应该建立关于参数的不等式或者是等式,用函数的值域或定义域或者是解不等式来完成,在对式子变形的过程中,应优先选择分离参数的方法。

  8、在解三角形的题目中,已知三个条件一定能求出其他未知的条件,简称“知三求一“。

  9、求双曲线或者椭圆的离心率时,建立关于a、b、c之间的关系等式即可。

  10、解三角形时,首先确认所求边角所在的三角形及已知边角所在的三角形,从而选择合适的三角形及定理。

  11、在数列的五个量中:中,只要知道三个量就可以求出另外两个量,简称“知三求二”。

  12、圆锥曲线的题目应优先选择他们的定义完成,而直线与圆锥曲线相交的问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法(使用韦达定理首先要考虑二次函数方程是否有根即:二次函数的判别式)。

  13、求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简。

  14、在求离心率时关键是从题目条件中找到关于a、b、c的两个方程或由题目得到的图形中找到a、b、c的关系式,从而求离心率或离心率的取值范围。

  15、三角函数求最值、周期或者单调区间,应优先考虑化为一次同角弦函数,然后使用辅助角公式解答;与向量联系的题目,注意向量角的范围;解三角形的题目,重视内角和定理的使用。

  16、立体几何的第一问如果是为建系服务的,一定用传统做法做(例如平行应想到平行四边形或三角形的中位线,垂直的应想到勾股定理的逆定理或者等腰三角形等);如果不是,那么可以在第一问就开始建立直角坐标系来解决。

  17、利用导数解决存在性的问题需要构造函数,但选取函数的最值不同。注意“恒成立”与“存在”的区别,“在某区间上,存在使f(x)m成立”,即函数f(x)的最大值大于或等于m;“在某区间上,存在x使f(x)m成立”,即函数f(x)的最小值小于或等于m。

  18、概率的题目如果出解答题,应该首先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径。

  19、注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,全称与特称命题的否定写法,排列组合中的枚举法,取值范围或是不等式的解得端点能否取到需要单独验证,用点斜式或者斜截式方程的时候要考虑斜率是否存在等。

    20、解决参数方程的一个基本思路是将其转化为普通方程,然后在直角坐标系下解决问题。

【二】高考数学选择题技巧整理

  1.剔除法:利用已知条件和选项所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

  2.特特殊值检验法:对于具有一般性的数学问题,在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

  3.极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,采用极端性去分析,就能瞬间解决问题。

  4.顺推破解法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

  5.逆推验证法(代答案入题干验证法):将选项代入题干进行验证,从而否定错误选项而得出正确答案的方法。

  6.正难则反法:从题的正面解决比较难时,可从选项出发逐步逆推找出符合条件的结论,或从反面出发得出结论。

  7.数形结合法:由题目条件,做出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

  8.递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

  9.特征分析法:对题设和选择项的特点进行分析,发现规律,归纳得出正确判断的方法。

  10.估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。

【三】数学答题技巧及注意事项

  1、简单题一般较为简单的题目,我们弄清题意,直接从题设的条件出发,利用已知条件、相关公式、公理、定理、法则,通过准确的运算、严谨的推理、合理的验证得出正确的结论,这是大家一直以来都这么做的,简单的题目推荐这么做。这类题往往不需要思考,纯属于课本知识点回顾。

  2、比较排除法给一个东西挑毛病是远远简单于证明一个东西正确的。选择题的解题本质就是“选择”,舍弃不符合题目要求的错误答案,找到符合题意的正确结论。可通过筛除一些较易判定、不合题意的结论,缩小选择的范围,再从其余的结论中求得正确的答案。

  技巧:采用简捷有效的手段(如取特殊值,找特殊点,选特殊位置等),通过分析、推理、计算、判断作出选择。

  3、选项代入即将各选项中的数值一一代入题干,从而得到正确答案,可以节约大量时间。选项若是具体数值、区间、取值范围、词组构成的,都可以观察是否能够代入。通过对试题的观察、分析、确定,将各选择支逐个代入题干中,进行验证、或适当选取特殊值进行检验、或采取其他验证手段,以判断选择支正误的方法。

  4、图象法(数形结合法)即利用图形结合数式直观地进行判断。在解答选择题的过程中,可先根椐题意,作出草图,然后参照图形的作法、形状、位置、性质,综合图象的特征,得出结论。特别是解三角形、圆锥曲线,由于高考中给出的数值大多是特殊值,做图能力强的可以直接衡量得出结论,因为高考考场上,一定要准备好圆规、量角尺、尺子。第1页 利用函数图象或方程的曲线,将数的问题(如解不等式、求最值,求取值范围等)与某些图形结合起来,再辅以简单计算的方法。每年高考均有选择题可以用数形结合思想解决,既简捷又迅速。

  5、估算、合理猜测即由题设条件,结合个人的经验,运用非严格的逻辑推理合理地猜测出正确结论。对于综合性较强、选择对象比较多的试题,要想条理清楚,可以根据题意建立一个几何模型、代数构造,然后通过试探法来选择,并注意灵活地运用上述多种方法。此法是一种粗略的算法,即把复杂的问题转化为较简单的问题从而对运算结果确定出一个范围或作出一个估计,进而作出判断的方法。此法关键要看考生的基本功是否扎实。

  以上是优优网小编为大家集锦的有关于高考数学选择题解题技巧,更多学科的选择题解题技巧及知识点整理请持续关注优优网,感谢大家的支持。

澳门赌场app